VETIVER SYSTEM FOR RIVER AND CANAL BANK STABILISATION

Paul Truong
TVNI Technical Director
Email <Paultruong@vetiver.org>
Brisbane, Australia

All materials in this document remain the property of TVNI. Permission must be obtained for their use. Copyright © 2017
Principles of the Vetiver System for River Bank Stabilisation

In flood erosion control and riverbank stabilisation the VS uses the deep and high tensile root system to reinforce the bank slopes and its dense and stiff stems to spread and reduce flow velocity.

• To stabilise the bank steep gradients, horizontal rows planted on approximate contour lines.

• To reduce flow velocity of the strong current therefore preventing scouring from the strong flow, planting of cross rows is needed.

• For maximum effect, the cross rows are orientated at right angle to the flow direction.

• The spacing of both horizontal and cross rows varies with slope gradient and length, soil type, flow velocity and depth.
Strong current flattened the native grass but not vetiver on this waterway.
Indoor flume test

Water level

Water trickles down
In flume test a mature hedge can bank up water to 600mm depth.
COLUMBOOLA CREEK
Stabilisation of creek bank using Vetiver Grass

MK Main Roads
Severe erosion on the abutment of the Coolumboola Creek bridge near Miles.
Vetiver planting following repair
Cross rows are most effective when planted right angle to flow direction
One month after planting
Six month after planting
There were several big flows during the first summer and no damages were noted. This abutment is now well protected by these mature vetiver.
18 months after planting
Five years after planting
Dam spillway protection
Six months after planting
Eight months after planting Vetiver
Mekong Delta Vietnam: Protecting bank against wave erosion
Six months after planting
Assam, India: Doria Bridge approach, Note: grid pattern
Two months after planting
Two years after planting