RESEARCH AND DEVELOPMENT OF THE VETIVER SYSTEM FOR TREATMENT OF POLLUTED WATER AND CONTAMINATED LAND

Dr. Paul Truong The Vetiver Network International Veticon Consulting Brisbane, Australia

All materials in this document remain the property of Veticon Consulting P/L. Permission must be obtained for their use. Copyright © 2008

SPECIAL CHARACTERISTICS SUITABLE FOR PHYTO REMEDIATION

MORPHOLOGICAL CHARACTERISTICS

- Stiff and erect stems
- Deep and extensive root system
- It has no above or underground stems

PHYSIOLOGICAL CHARACTERISTICS

- Tolerant to drought, water logging, acidic, alkaline, sodic and saline conditions
- Tolerant to highly polluted environment such as heavy metal and nutrient contamination
- Tolerant high level of herbicides and pesticide in the soil
- Growing on all soil types: heavy clay to sand dune

GENETIC CHARACTERISTICS

- It is sterile, it flowers but sets no seeds
- Therefore it is non invasive and no weed potential
- It can be eliminated easily by Glyphosate spray or uprooting

R & D ON ADVERSE GROWING CONDITIONS

THRIVE ON TEMPERATURE RANGE BETWEEN -14 AND 55%

The effect of soil temperature on the root growth of vetiver.

HIGHLY TOLERANT TO SOIL SALINITY

Saline threshold level is at $EC_e = 8 \text{ dsm}^{-1}$, and vetiver can survive at 47.5 dsm⁻¹ under dryland salinity conditions

Vetiver growing among mangrove seedlings in Australia

Salt tolerance level of Vetiver grass as compared with some crop and pasture species grown in Australia.

	Soil EC _{se} (dSm ⁻¹)		
Plant Species	Saline Threshold	50% Yield Reduction	
Bermuda Grass (Cynodon dactylon)	6.9	14.7	
Rhodes Grass (C.V. Pioneer) (Chloris guyana)	7.0	22.5	
Tall Wheat Grass (Thynopyron elongatum)	7.5	19.4	
Cotton (Gossypium hirsutum)	7.7	17.3	
Barley (Hordeum vulgare)	8.0	18.0	
Vetiver (Vetiveria zizanioides)	8.0	18.0	

HIGHLY TOLERANT TO SOIL ACIDITY, ALUMINIUM AND MANGANESE TOXICITIES

Special Physiological Features Growth was not affected at pH=3.3 and extremely high Mn level of 578 mg/kg

Highly tolerant to acid sulfate soil conditions with pH = 3.0

One year after planting

R & D ON NUTRIENT UPTAKE AND TOLERANCE

NITROGEN UPTAKE

Potential N uptakes as compared with others plants Potential P uptakes as compared with others plants

PHOSPHORUS UPTAKE

Vetiver growth increased with N application up to 6t/ha/year, higher rates did not affect vield

Vetiver growth increased with P application up to 250/ha/year, higher rates did not affect yield

The highest yield treatment (N= 6000 kg/ha/year and P= 250 kg/ha/year) and the lowest yield treatment (N nil and P nil).

Left Vetiver growing vigorously, with no toxic effect at 10 000kgN/ha/year and 1000kgP/ha/year, as compared with the best treatment, 6 000kgN/ha/year and 250kgP/ha/year Right.

R & D ON BIOMASS PRODCTION AND NUTRIENT UPTAKE

R & D ON BIOMASS PRODCTION AND WATER USE

Relationship between water use and dry matter (r = 0.7286)

Dry matter yield of vetiver over the 12week period

R & D ON MODELLING

Photographed the sward weekly to measure % Cover Hand harvested 1 m² quadrants to measure weekly shoot yield, nitrogen and phosphorus contents.

Measured weekly shoot heights

¥

VER

TON CONSULTING

N and **P** interaction on biomass

Correlation between yield and shoot N and P concentrations

Root growth response to N and P applications

Recovery rates of N and P by vetiver grass.

A	%Recovery	%Recovery	%	Total
Treatment	by Shoot	by Root	Recovered in Soil	
N2 (t/ha)	76.3	20.4	0.3	97
N4 (t/ha)	72.1	23.1	0.1	95
N6 (t/ha)	67.3	21.2	0.4	89
N8 (t/ha)	56.1	30.0	0.4	87
N10 (t/ha)	46.7	17.0	0.1	64
P250 (kg/ha)	30,5	23.3	46.3	100
P500 (kg/ha)	20.5	14.6	48.7	84
P1000 (kg/ha)	16.5	14.2	40.8	72

R & D ON HYDRAULIC CHARACTERISTICS

Hydraulic Flume: The flume consists of two concrete testing channels, 2m wide and 20m long

Side view of row planting, at 2m spacing

At 60cm depth the first row vetiver was bent over but not the second row

Over the distance of less than 20m, the water level in the flume was dropped by 50cm

Note relatively uniform flow through hedge and strong turbulence after the hard structure (drop board)

R & D ON HYDROPONICS

DIFFERENT GROWING MEDIA

- Broken glass
 No medium, just Vetiver
- River stones No medium, Vetiver, 2 circulations a day
- Sand
- Road base

No medium, no Vetiver (controls)

Hanging frame for hydroponic Vetiver

14 weeks

R & D ON WATER QUALITY

Vetiver strip trapped sediment

Trapping herbicides on cotton farms in central Queensland

Trapping pesticides on cotton farms in central Queensland

Comparison of whole plant dry weights of vetiver and Phragmites at the high rates of herbicide application,

Industrial Effluent from an abattoir in Australia

Effectiveness of vetiver planting on quality of effluent seepage

Analytes		Nutrient leve	els	
	Inlet	let Mean levels in monitoring bores		
		20m down slope from inlet	50m down slope from inlet	
pН	8.0	65	6.3	
EC (uS/cm)	2200	1500	1600	
Total Kjel. N (mg/L)	170	11.0	10.0	
Total N (mg/L)	170	17.5	10.6	
Total P (mg/L)	32	3.4	1.5	

R & D ON HEAVY METAL TOLERANCE Threshold levels of heavy metals to vetiver growth as compared with other species

Heavy Metals	Threshold levels in soil (mgKg ⁻¹)		Threshold levels in plant (mgKg ⁻¹)	
	Vetiver	Other plants	Vetiver	Other plants
Arsenic	100-250	2.0	21-72	1-10
Cadmium	20-60	1.5	45-48	5-20
Copper	50-10	Not available	13-15	15
Chromium	200-600	Not available	5-18	0.02-0.20
Lead	>1 500	Not available	>78	Not available
Mercury	> 6	Not available	>0.12	Not available
Nickel	100	7-10	347	10-30
Selenium	>74	2-14	>11	Not available
Zinc	>750	Not available	880	Not available

Special Physiological Features Arsenic: Toxic threshold level between 100-250 mg/kg

mg/kg 0 100 250 500 750

Special Physiological Features

Copper: Toxic threshold level between 35-60 mg/kg

Special Physiological Features

Chromium: Toxic threshold level between 200-600 mg/kg

This Bentonite waste site is barren with an extremely erodible surface which has low water infiltration and high runoff rates.

Fourteen months after planting, note the growth of other species

Chemical analyses of the Bentonite tailings			
Analyses	Overburden	Bentonite tailings	
pН	5.4	5.4	
EC (mS/cm)	0.18	0.14	
Cl (mg/kg)	135.0	47.4	
NO3-N (mg/kg)	1.9	0.7	
P (mg/kg)	2.0	5.0	
SO4-S (mg/kg)	66.0	101.0	
Ca (meq/100g)	0.19	0.93	
Mg (meq/100g)	4.75	6.44	
Na (meq/100g)	2.7	7.19	
K (meq/100g)	0.16	0.43	
Organic Matter (%)	0.45	0.35	
ECEC (meq/100g)	8	15	
ESP (%)	35	48	

China : Pb – **Zn** tailings rehabilitation with vetiver grass

