PILOTO DE TRATAMIENTO NO CONVENCIONAL PARA AGUAS ASOCIADAS A LA PRODUCCIÓN DE HIDROCARBUROS EMPLEANDO HUMEDAL ARTIFICIAL CON PASTO VETIVER

Raul Leonardo Triana Alonso
Juan Carlos Burgos Garavito
José Luís Zúñiga Navarro
OBJETIVOS

- Contextualizar a los participantes de la Conferencia Latinoamericana en Sistemas Vetiver, cual es el proceso de tratamiento convencional del agua generada por la actividad de extracción de hidrocarburos en la industria del petróleo, específicamente el campo Castilla en Colombia.

- Montar, Operar y Mantener un Sistema Piloto de tratamiento No Convencional para mejoramiento de la calidad de agua de vertimiento.

- Usar un humedal artificial con pasto vetiver para la depuración del agua de producción.

- Realizar pruebas preliminares para determinar concentraciones de grasas-aceites y sólidos suspendidos, antes y después del tratamiento.

- Evaluar la adaptación del pasto vetiver al agua de producción.

- Determinar otros beneficios potenciales en el tratamiento de agua de producción del campo Castilla.
Bloque Cubarral – Campos Castilla y Chichimene

CONVENCIONES
- Producción Directa y Asociada
- Exploración en Asociación
- Exploración Directa ECP

Fuente: Ecopetrol GEC
El agua de formación o agua de producción está asociada con el petróleo existente en los yacimientos y sale a la superficie junto con el gas y el petróleo.
PRONOSTICOS

- En los planes de desarrollo se plantea llegar a una producción promedio de 170 KBOP en el año 2013, la cual se sostendrá por 5 años. Actualmente el BSW del campo es 83% - Portafolio 2012
- El volumen de agua asociada a la producción llegará a valores superiores de 3.500 KBWPD (6,44 mt3/seg) y el BSW del campo al 98%
- Actualmente la relación de producción de petróleo – agua es 1:5; en el año 2018 la relación llegará de 1:35
SISTEMA DE TRATAMIENTO PETRÓLEO Y GAS
SISTEMA DE TRATAMIENTO AGUA (STAP)

Eficiencia remoción sólidos suspendidos: 97%
Eficiencia remoción grasas y aceites: 99%

Cabezas

Piscinas de aspersión

Filtros

Piscinas de estabilización

CPI's

Sistema tratamiento de lodos

Río Guayuriba

Lines de vertimiento

Foso vertimiento

Foso quietamiento

Compensación

Lavado

Surgencia

Cenizas

ние

SS: 4 ppm
O/W: 0,3 ppm
T: 32°C
DECRETO 1594 DE 1984 - Artículo 40 Capítulo IV: Criterios admisibles para la destinación del recurso para uso agrícola.

<table>
<thead>
<tr>
<th>PARAMETROS</th>
<th>UNIDADES</th>
<th>RANGOS</th>
<th>AGUA DE PRODUCCION CASTILLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Unidades</td>
<td>4.0 - 9.0</td>
<td>7.4</td>
</tr>
<tr>
<td>Grasas y Aceites</td>
<td>ppm</td>
<td>5.00</td>
<td>< 1.00</td>
</tr>
<tr>
<td>Solidos suspendidos</td>
<td>ppm</td>
<td>5.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Magnesio</td>
<td>mg / L Mg^{++}</td>
<td>5.00</td>
<td>2.52</td>
</tr>
<tr>
<td>Arsenico</td>
<td>mg / L As</td>
<td>0.10</td>
<td>0.0004</td>
</tr>
<tr>
<td>Aluminio</td>
<td>mg / L Al^{3+}</td>
<td>5.00</td>
<td>0.0360</td>
</tr>
<tr>
<td>Boro</td>
<td>mg / L B</td>
<td>0.3 - 4.0</td>
<td>0.1560</td>
</tr>
<tr>
<td>Cadmiun</td>
<td>mg / L Cd</td>
<td>0.01</td>
<td>2.60E-05</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg / L Zn</td>
<td>2.00</td>
<td>0.0040</td>
</tr>
<tr>
<td>Cobalto</td>
<td>mg / L Co</td>
<td>0.05</td>
<td>0.0003</td>
</tr>
<tr>
<td>Cobre</td>
<td>mg / L Cu</td>
<td>2.00</td>
<td>0.0020</td>
</tr>
<tr>
<td>Hierro</td>
<td>mg / L Fe</td>
<td>5.00</td>
<td>0.44</td>
</tr>
<tr>
<td>Litio</td>
<td>mg / L Li</td>
<td>2.50</td>
<td>0.2224</td>
</tr>
<tr>
<td>Manganeso</td>
<td>mg / L Mn</td>
<td>0.20</td>
<td>0.1378</td>
</tr>
<tr>
<td>Molibdeno</td>
<td>mg / L Mo^{6+}</td>
<td>0.01</td>
<td>5.3E-04</td>
</tr>
<tr>
<td>Niquel</td>
<td>mg / L Ni</td>
<td>0.20</td>
<td>0.0016</td>
</tr>
<tr>
<td>Plomo</td>
<td>mg / L Pb</td>
<td>5.00</td>
<td>0.0003</td>
</tr>
<tr>
<td>Selenio</td>
<td>mg / L Se</td>
<td>0.02</td>
<td>0.0009</td>
</tr>
<tr>
<td>Vanadio</td>
<td>mg / L V</td>
<td>0.10</td>
<td>0.0003</td>
</tr>
</tbody>
</table>
LOCALIZACION GEOGRAFICA Y ANALISIS DE LA DISPOSICION ACTUAL DE AGUA DE PRODUCCION DE LA SCC

Vertimiento
630 KBPD
Proyectado 2 MBAPD

Aprovechamiento Agricola-pecuario
70 KBPD
Proyectado 2MBPD

Pozo Disposal
80 KBPD
Proyectado 2 MBAPD
Vertimiento

Descarga al río Guayuriba

Línea Vertimiento 36”
Estructura de un pozo disposal
Area de Sostenibilidad en Agroenergía (ASA)

El Antes

El Después
PILOTO DE TRATAMIENTO NO CONVENCIONAL PARA AGUAS ASOCIADAS A LA PRODUCCIÓN DE HIDROCARBUROS EMPLEANDO HUMEDAL ARTIFICIAL CON PASTO VETIVER
Objetivo del piloto:
Proponer una alternativa de tratamiento no convencional, amigable con el medio ambiente para el agua de producción del campo Castilla.
UBICACIÓN DEL PROYECTO

Estación Castilla Dos
OPERACIÓN, PRUEBAS Y MONITOREO
ESQUEMA DE TRATAMIENTO PILOTO

Proceso:

- EL agua de producción que va a ser sometida a una prueba de tratamiento es la proveniente de la piscina #4.
- EL agua es distribuida mediante un tanque de almacenamiento de 5000 L hacia el humedal.
- El agua que pasa al humedal es regulada mediante bomba. Se manejan diferentes caudales según las variables de operación previamente establecidas.
- El humedal con dimensiones de 6m x 2m x 1m alberga especies de pasto vetiver dispuestos en bandejas diseñadas y construidas para que se ajusten al diseño del humedal.
- El pasto se establece en las bandejas de forma flotante. La profundidad de la lamina de la columna de agua es de 0,6m. Pendiente del 1% en dirección al flujo.
- El piloto opera diariamente de 8:00 AM a 04:00 PM. Se toman muestras en la jornada de la mañana y la tarde.
EVIDENCIAS FOTOGRAFICAS

Especies de pasto vetiver plenamente adaptadas (Se sembraron plántulas de 20 cm el día 24 de mayo. La foto de se tomó el 9 sep. 2013.

Las raíces miden en promedio 75 cm. Las hojas tienen una altura promedio de 90 cm con un máximo de 120 cm.

Se evidencia el hallazgo de huevos de anfibios, Se encontraron anfibios residentes en las bandejas de las plantas del humedal. También se encontró ninfas de libélula. Esto parece indicar que el agua tratada permite albergar vida.
RESULTADOS

Grasas y Aceites (mg/L)

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Promedio diario grasas y aceites (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[] Entrada</td>
</tr>
<tr>
<td>26/06/13</td>
<td>1,45</td>
</tr>
<tr>
<td>27/06/13</td>
<td>0,33</td>
</tr>
<tr>
<td>28/06/13</td>
<td>0,37</td>
</tr>
<tr>
<td>02/jul/13</td>
<td>3,39</td>
</tr>
<tr>
<td>03/jul/13</td>
<td>1,74</td>
</tr>
<tr>
<td>04/jul/13</td>
<td>1,33</td>
</tr>
<tr>
<td>08/jul/13</td>
<td>0,76</td>
</tr>
<tr>
<td>09/jul/13</td>
<td>0,905</td>
</tr>
<tr>
<td>10/jul/13</td>
<td>5,225</td>
</tr>
<tr>
<td>11/jul/13</td>
<td>2,015</td>
</tr>
<tr>
<td>12/jul/13</td>
<td>0,595</td>
</tr>
</tbody>
</table>
RESULTADOS

Solidos Suspendidos (mg/L)

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Promedio diario Solidos suspendidos (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entrada</td>
</tr>
<tr>
<td>26/06/13</td>
<td>8</td>
</tr>
<tr>
<td>27/06/13</td>
<td>1,65</td>
</tr>
<tr>
<td>28/06/13</td>
<td>3</td>
</tr>
<tr>
<td>02/jul/13</td>
<td>7</td>
</tr>
<tr>
<td>03/jul/13</td>
<td>13</td>
</tr>
<tr>
<td>04/jul/13</td>
<td>9,25</td>
</tr>
<tr>
<td>08/jul/13</td>
<td>6</td>
</tr>
<tr>
<td>09/jul/13</td>
<td>10,5</td>
</tr>
<tr>
<td>10/jul/13</td>
<td>9,5</td>
</tr>
<tr>
<td>11/jul/13</td>
<td>13,5</td>
</tr>
<tr>
<td>12/jul/13</td>
<td>18</td>
</tr>
</tbody>
</table>
• Presencia de piojo blanco en las hojas de vetiver.
• Mantenimiento al vetiver con solución jabonosa. El jabón es de pH neutro.
• Semanalmente se hace mantenimiento a las plantas, se les mide longitud de las raíces, se observa el estado fitosanitario, se busca presencia de insectos, etc.
CONCLUSIONES Y RECOMENDACIONES

- El sistema convencional actual de tratamiento de agua de producción es eficiente y cumple con la normatividad ambiental Colombiana, sin embargo en busca de nuevas alternativas costo efectivas se está realizando un esfuerzo adicional para mejorar la calidad del agua con el piloto.

- Los ensayos aún continúan y se espera probar el comportamiento del sistema y porcentajes de remoción para otros parámetros físicos y químicos.

- Por el momento las pruebas solo se hacen para grasas y aceites y sólidos suspendidos, pero es necesario analizar otros parámetros como DBO, DQO, fenoles, oxígeno disuelto, BTEX, PAH, entre otros, característicos de las aguas de producción y con un potencial contaminante.

- La observación del comportamiento de la especie permite inferir que esta ha respondido positivamente adaptándose a las condiciones del agua industrial y desarrollándose sin problemas aparentes.
BIBLIOGRAFÍA
